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Fig.3 Ccimparison between theoretical values and experimental ones.

variational method agree well with the experimental ones to within

an
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error Of 1 percent.
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Reciprocity Theorem for a Regioh with Inhomogeneous

Bianisotropic Media and Stirface Impedance

MASANORI KOBAYASHI

Absfracf—It is shown that the modified reciprocity theorem holds
for a region bounded by inhomogeneouii ahisotropic impedance

~wrfaces and composed of regioris with lossless inhomogeous biqiso-

tropic media; aird besides, the reciprocity theorem holds for the case
wiilr a condition.

I. INTRODUCTION

Bianisotropic media or moving media have been treated in the

literature [1 ]–[13], [18]. A moving medium, even if it is isotropic

in its rest frame, must be treated as bianisotropic [6]. Recently, it

was 8hown by Kong and Cheng [1] that a properly modified reci-
procity theorem could be applied to bianisotropie media; they
(discussedthe modified reciprocity theorem between a single-blaniso-
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tropic medium region and its complementary region. These regic,ns

are either bounded by perfectly conducting surfaces, or by surfaces

that recede to infinity. However, waveguides with surface impedance

walls are also of interest [14], [15].

In this short paper, the modified reciprocity theorem is derived

in a iegion bounded by impedance surfaces; and besides, the reci-

procity theorem is derived for the case with a condition.

II. THEORY

Consider a region R consisting of p subregion; in a three-dimen-

sional space. The region R is bounded by inhomogeneous anisotropic

impedance surface ~ and is composed of the regions Ri (i = 1,2,.. .,

p). Let the region lti be filled with a lossless inhornogeneous bianiso-

tropic medium [3], [18] and be bounded by the surface &.

Maxwell’s equations for a time-harmonic and finite electric cur-

rent density, J(r) exp ( jot), in such a region R are given by

V X E(r) = –j0J3(r) (1)

V X H(r) = jail(r) + J(r) (2)

subject to the conEtitutive relations

D(r) = Z(r) -l?(r) + i?(r) -H(r) (3)

B(r) = 7(r) .E(r) + &(r) .H(r) (4)

and the impedance boundary condition

i2X E(r) = –fi X[Z(r)”{~X H(r))] oni3 (5)

and the conditions at the interfaces flt 11s~ (ijk = 1,2,. .0 ,p; i # k)

,.,, AA
% X {% X E(r) ) kOW,7ESt = fik X {~k x E(r) ) Ismsi,r,sk (6)

A.. ,..

rzi X {fzi X H(r) ) ],s. risk. resi = m X {m X H(r) ) Iskn.si, rfsk (7)

tensors of rank 2;

when7 < Ri (i = 1,2,. so,p);

outer normal unit vectors to iS’

and i3i (i = 1,2,. . ., P), respec-

tively;
—— surface impedance tensor.

Now let us assume that the medium is such that [3], [18]

:*T = ~ (8)

and let the field solutions corresponding to current sources J. md

&be E. and Ha, and & and &, respectively. We obtain

v.(Es* X Ht, + E~ X H.*) = —J.*-Et) — Jb.&* (:11)

where the asterisk denotes the complex conjugate and the super-

script 2’ denotes the transpose. Applying the divergence theorem

to (11), we obtain the following modified Lorentz reciprocity

theorem for the region Ri (i = 1,2,.. .,p) :

///
(–~.*.& – J,-z?.*) dV

si

By using (5), the integrand in the right-hand side of (12) becomes

zero on the surface 6’. il AS if the surface impedance tensor -??(r),
which is defined in (5), is such that
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.@= –z. (13)

Therefore, (12) becomes

/!/
(–J.*..% – A.E.*) dv

Ri

.

!/
(E.* X H, + E, X Ha”) .$, dS (14)

u (k#i)

where

Zi(k *i) = (’J S,nfh. (15)
k=l, k#;

Summing (14) over all -i and rearranging those surface integrals by

using (6) and (7), we obtain

R R

Now we define the quantities as follows:

(16)

(17)

R

{b,a] = j
///

Jb” .Ea dV. (18)

R

Then the complex conjugates of those quantities yield as follows:

{a, b)” = –j
/l

Ja.Eb* dV (19)

E

{b,a)* = –j ~(1 Jb.E~* dV. (20)

By using (16)–(20), we

theorems:

JJJ

E

obtain the following modified reciprocity y

{a,b} = {b,a)* (21)

{b,a} = {a,b}*. (22)

Let J. and Jh be infinitesimal current elements as follows:

J. = J.’ exp ( jda)~ (r - T.) (23)

Jh = Jh’ e~p ( j6’6)~ (r – rb) (24)

where J=’ and .h’ are real vectors. Let Ea and Eh be expressed as

follows :

E. = E.’ exp [ j{@~ + @~(~,rc) }1 (25)

Eb = E; eXp [j{eb + db(r,yb) )] (26)

where E.’ and Eb’ are real vectors of functions of position, and +.

and @ are phase differences of E. to J. and of E6 to Jb, respectively.

Using (23)– (26), (16) becomes

JJ.E,’ exp [j{% – & + &(r.,r,) )]

= Jb’.Ea’ exp [j{ *Z + t% – O. – $h(rb,r.) )]. W)

Then we obtain the following relations:

J.t .Eb! = Jb~.Eal (28)
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~. (rb,r.) ‘+ @b(rdb) = *T. (29)

We consider a case in which the phase difference of E. at the

point rb to ~. equals that of & at the point ra to Jb, that is,

h (rb,ra) = @b (rdb). (30)

Therefore, we obtain from (29) and (30)

4. = @ = hW/2. (31)

From (23) through (26), (28), and (31), we obtain

J.. Eb = J6.EC. (32)

In a case in which current sources are not infinitesimal current

elements, the following reciprocity theorem holds:

(33)

R R

Using the reactions [16] and [17], (33) can be rewritten as follows:

(a,b) = (bja) (34)

where

(a,b) = ~~” Ja.Eb dV.

R

From (33), besides, we find that the following. equation holds:

1
(E. X Hb – Eb XHa).; dS

s

= jw
‘Ill

[Es- (ST – S) ‘Eb – Ho. (ET – ‘~) ‘Hb

E

+ Ha. (v + @“).Eb – Ea.(W’ +i?).Hb]dv. (35)

Equations (31 ) and (34) enable us to state the fcllowing results

if a medium is such [ (8)– (10)] that the right-hand side of (12)

vanishes on the closed surface S bounding the regicm R, and (30)

holds.

1) The phase of an electric field leads or lags by m/2 more than

that of a corresponding electric current source.

2) The reaction of one set of sources on another is equal to the

reaction 6f sources of the latter set on the former.

3) Although reactions do not in general represent power, reaction

is a useful quantity [17, p. 118]. Because of this conservative

property [ (34), for example], reaction can be usedl as a measure

of equivalency for a region consisting” of bianisotropic media and

bounded impedance surfaces.

4) Equation (35) holds.

III. CONCLUSION

The modified reciprocity theorem holds for a regiorl enclosed with

an impedance surface; and besides, the reciprocity y theorem holds

for the case with a condition although the reciprocity, theorem does

not generally hold for a bianisotropic medium which is nonreciprocal.

The system may be considered to be a resonator, whwe the electric

and magnetic fields form standing waves, with the p!hase difference

of electric field relative to the current source equal tc 4z/2.
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New Results in the Least pth

Approach to Minimax Design

J. W. BANDLER, SENIOR MEMBER, IEEE,

C. CHARALAMBOUS, STUDENT MEMBER, IEEE,

J. H. K. CHEN, AND W. Y. CHU, STUDENT MEMBER, IEEE

Absfracf—We present results of two general approaches for ob-

taining minimsx designs through a sequence of least pth approxima-

tions demonstrating increased efficiency over previous least pth

algorithms. Documented computer programs are available.

INTRODUCTION

This short paper demonstrates the acceleration of convergence to

minimax solutions by extrapolation on a sequence of least pth solu-

tions [1] with geometrically increasing values of p, and compares

the results with an efficient extension of work by Charalambous
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and Bandler [2], [3], in which a sequence of least pth solutions with

finite values of p are obtained in an effort to reach a minimax

solution. Documented computer programs are available [4], [5],

as well as the theoretical background [6]–[8].

THEORY

We minimize, with respect to + for given f and p >1, the func-

tion

IO, M(+,g) = o (1)

where

and

1

z c {1,2,..., rrz}, M(+,$) <0

K=

J4J{ilf, (41)-520, if I}, M(+,f) >0 (2)

and where @ A [I#II@””” +~]~ is the design parameter vector, and

.fl(o),.f2(+)f””” , f- (o) are m linear or nonlinear functions directly

related to the response error functions such that if kf~ (o) >0 the

specifications are violated and if M)(+) < 0 the specifications are

satisfied.

Charalambous has shown [6] that if we have u and @ such that

fiui=l, u~>O, i=l,2,...,m
~=~

then, if ~ ui ~i (~) is convex with respect to +,
~=~

where & is the minimax optimum which iB being sought,

U ~ [u1u2 ““ “%IT

(3)

(4)

and

v & [d/a41a/a42.. .a/adklT.

The conditions (3) are satisfied at each optimum point $ (p,f) for

a least pth objective function, yielding

where, asmming K contains all critical sample points,

vi

“== (6)

i a

(0, i$K. (7)

The first term of (5), under the stated conditions, is a lower bound

on Mf ( f). It is, at any least pth solution, an optimistic indication

of the ultimate minimax error to be expected for a particular design.


