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Fig. 3 Comparison between theoretical values and experimental ones.

variational method agree well with the experimental ones to within
an etror of 1 percent.
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New

Reciprocity Theorem fof a Region with Inhomogeneous
Bianisotropic Media and Surface Impedance

MASANORI KOBAYASHI

- Abstract=It is shown that the modified reciprocity theorem holds
for a region bounded by mhomogeneous anisotropic impedance
surfaces and composed of regions with lossless 1nhomogeous blamso-
{ropic media; and besides; the reciprocity theorem holds for the case
with a condition. .

1. INTRODUCTION

Bianisotropic media or moving media have bieen treated in the
literature [13-[1387, [18]. A moving medium, even if it is isotropic
in its rest frame, must be tredted as bianisotropic [67]. Recently, it
was shown by Kong and Cheng [1] that a properly modified reci-
procity theorem could be applied to bianisotropic media; they
discussed the modified reciprocity theorem between a single-bianiso-
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tropic meditm region and its complementary region. These regions
are either bounded by perfectly ¢onducting surfaces, or by surfaces
that recede to infinity. However, waveguides with surface impedance
walls are also of interest [147, [15].

In this short paper, the modified reciprocity theorem is derived
in a region bounded by impedance surfaces; and besides, the reci-
procity theorem is derived for the case with a condition.

II. THEORY

Consider a region R consisting of p subregioﬁqgfin a three-dimen-
sional space. The region R is bounded by inhomogenecus anisotropie
impedance surface S and is coniposed of the regions B; (7 = 1,2,++ -,
p). Let the region R; be filled with a lossless inhomogeneots bianiso-
tropic medium [37], [187 and be bounded by the surface S..

Maxwell’s equations for a titne-harmonic and finite electric cur-
rent density, J(r) exp ( jwt), in such a region R are given by

VX E(r) = —jwB(r) 1)
VX H(r) = juD(r) + J(r) ()
subject to the constitutive relations
D(r) = &(r)-E(r) +%(r)-H(r) (3)
B(r) = 5(n)-E(r) + §()-H(r) o)

and the impedance boundary condition

I

# X E(@) =
and the conditions at the interfaces ;N Sk (4,k = 1

—n X [Z@)-{n X HT)}] on 8 (5)
;27' MY 1 5 k)
lsenss,ress  (6)

e X {#e X H) Y |siasures: = n X {0e X HT)} lomngsres,  (7)

7y X A7t X E(1)} |sinsres; = 7k X {#ie X E(r)}

where
AT A tensors of rank 2;
E=5 B =0, R=%,v=§; Wheh?ERi(i=l,2,‘-°,p); _
, 7 : outer normal unit vectors to S
and 8; (z =1,2,+++,p), respec-
tively;
Z = surface 1mpedance tensor.

Now let us assume that the medium is such that [3], [18]

B = § (8)
7 =3 9)
BT =3 (10

and let thie field solitions corresponding to current sources J, and
J» be E, and H,, and E, and H,, respectively. We obtain
Ve (Es* X Hy + Ey. X H*) = —J*Ey — JpoE* (11)

where the asterisk denotes the complex con]ugate and the super-
seript 7' denotes the transpose. Applying the divergence ‘theorém
to (11), wé obtain the following modified Lorentz reciprocity
theorem for the region R; (1 = 1,2,«++,p):

// (—Jo*Ey — JyoE*) 4V
R

= / (E* X Hy + Ey X Ho*)-7;d8.  (12)

8

By using (5), the integrand in the right-hand side of (12) becomes
zero on the surface S;N S if the surface impedance tensor Z(r),
which is defined in (5), is such that
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¥ = 7, (13)

Therefore, (12) becomes

// (=J*Ey — JyE*) dV
R

/ (E* X Hy + Ey X H*)o5,dS  (14)
24(%0)

where

»
[J 8:n 8.

k=1, k7%

ik # 1) = 15)

Summing (14) over all 7 and rearranging those surface integrals by
using (6) and (7), we obtain

/// JAEydV = — f//’]b-Ea* av. (16)
R B
Now we define the quantities as follows:
{a,b} =j/// Jo*Ey dV 17)
B
(18)

vai = [[f 305w
R

Then the complex conjugates of those quantities yield as follows:

{a,b}* = —j ///]a-Eb* av (19)
R

{(bal* = —j /// JyoE* dv. (20)
R

By using (16)-(20), we obtain the following modified reciprocity
theorems:

{a,b} = {bal}* (21)
{ba} = {a,b}*. (22)
Let J, and J, be infinitesimal current elements as follows:
Jo = J. exp (j8a)8(r ~ 1) (23)
Jo = T exp (J6s)8(r — 13) (24)

where J." and Ji' are real vectors. Let E, and Es be expressed as
follows:

E, = E,/ exp [ j{0a + ¢a(r,7a) }]

Ey, = Ey exp [j{6s + ¢u(r,7)} ]

(25)
(26)

where E,’ and Ej are real vectors of functions of position, and ¢a
and ¢ are phase differences of E, to J. and of Ey to Ji, respectively.
Using (23)-(26), (16) becomes

J. By exp [ {8y — 8o -+ 3 (1a,1) } ]
=JL'*E/exp [j{xr + 0 — 0. — ¢pa(rp,7a) } J.  (27)
Then we obtain the following relations:

J/ By = J'-E (28)
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Ga(tyTa) + o (Ta,Te) = =£m. - (29)

We consider a case in which the phase difference of E, at the
point 1 to J; equals that of Ey at the point 7, to J;, that is,

Ba(To,fa) = ¢o(To,Ts). (30)
Therefore, we obtain from (29) and (30)
ba = ¢p = /2. (31)
From (23) through (26), (28), and (31), we obtain '
JuEy = Jp-E, (32)

In a case in which current sources are not infinitesimal current
elements, the following reciprocity theorem holds:

[ - fff s

Using the reactions {16 ] and [177, (33) can be rewtitten as %ollows:
<a:b> = <b;a>

{a,b) =//[Ja-Ede. ‘
R

From (33), besides, we find that the following equation holds:

(33)

(34)

where

/ (Eo X Hy — Ey X H,) -7 d8

= ju /// [Ear (37 — 5)+Ey — Ha+ (87 — §)-H,
®

+ Hor (5 4 7)o By — Eor (37 + %) - H, ] dV. (35)

Equations (31) and (34) enable us to state the fcllowing results
if a medium is such [(8)-(10)] that the right-hand side of (12)
vanishes on the closed surface 8 bounding the regicn R, and (30)
holds. '

1) The phase of an electric field leads or lags by =/2 more than
that of a corresponding electric current source.

2) The reaction of one set of sources on another is equal to the
reaction of sources of the latter set on the former.

3) Although reactions do not in general represent power, reaction
is a useful quantity [17, p. 118]. Because of this conservative
property [ (34), for example], reaction can be used as a measure
of equivalency for a region consisting of bianisotropic medla and
bounded impedance surfaces.

4) Equation (35) holds.

III. CONCLUSION

The modified reciprocity theorem holds for a region enclosed with
an impedance surface; and besides, the reciproecity theorem holds
for the case with a condition aithough the reciprocity theorem does
not generally hold for a bianisotropic medium which is nonreciprocal.
The system may be considered to be a resonator, where the electrie
and magnetic fields form standing waves, with the phase difference
of electrie field relative to the current source equal tc =-x/2.

REFERENCES
[1] J. A. Kong and D. K. Cheng, ‘‘Modified reciprocity theorem for

bianisotropic media,”” Proc. Inst. Elec. Eng., vol, 117, pp. 349350,
Feb. 1970. .



116

[2] J. A. Kong, “Reciprocity relationships for bianisotropic media,”
Proc. IEEE (Lett.), vol. 58, pp. 1966—1967, Dec. 1970.

[3] I. V. Lindell, “‘Some properties of lossless bianisotropic media,”

Proc. IEEE (Lett.), vol. 60, pp. 463—464, Apr. 1972.

[4] R. C. Costen and D. Adamson, ‘“Three-dimensional derivation of the
electrodynamic jump conditions and momentum-energy laws at a
moving boundary,” Proc. IEEE, vol. 53, pp. 1181~1196, Sept. 1965.

[5] H. C. Chen and D. K. Cheng, *“‘Constitutive relations for a moving
anisotropic medium,” Proc. IEEE (Lett.), vol. 54, pp. 62—63, Jan.
1966.

[6] D. K. Cheng and J. A. Kong, ‘“‘Convariant descriptions of bianiso-
tropic media,”’ Proc. IEEE, vol. 56, pp. 248-251, Mar. 1968.

{71 I. V. Lindel, “On the definiteness of the constitutive parameters of
a moving anisotropic medium,” Proc. IEEE (Lett.), vol. 60, pp.
638—639, May 1972.

[8] J. A. Arnaud and A. A. M. Saleh,” Theorems for bianisotropic
media,” Proc. IEEE (Lett)., vol. 60, pp. 639—640, May 1972.

91 J. A. Kong, ‘“Theorems of bianisotropic media,” Proc. IEEE, vol.
60, pp. 1036—1046, Sept. 1972.

[10] J. R. Collier and C. T. Tai, ‘‘Guided waves in moving media,”’
IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 441-445,
July 1965.

[11] L.J. Du and R. T. Compton, Jr., ‘“‘Cutoff phenomena for guided
waves in moving media,”” IEEE Trans. Microwave Theory Tech.,
vol. MTT-14, pp. 358-363, Aug. 1966.

[12] P. Daly, ““Guided waves in moving media,”’ IEEE Trans. Micro-
wave Theory Tech. (Corresp.), vol. MTT-15, pp. 274—275, Apr. 1967.

[13] J. A. Kong and D. X. Cheng, “On guided waves in moving aniso-
tropic media,”” IEEE Trans. Microwave Theory Tech., vol. MTT-
16, pp. 99—103, Feb. 1968.

[14] K. Kurokawa, ‘“‘Electromagnetic waves in waveguides with wall
impedance,” TRE Trans. Microwave Theory Tech., vol. M'TT-10,
pp. 314—320, Sept. 1962.

[15] R. B. Dybdal, L. Peters, Jr., and W. H. Peake, ‘“Rectangular wave-
guides with impedance walls,”” IEEE Trans. Microwave Theory Tech.,
vol. MTT-19, pp. 2—9, Jan. 1971.

[16] V. H. Rumsey, ‘‘Reaction concept in electromagnetic theory,’’
Phys. Rev., vol, 94, pp. 1483—1491, 1954; also, errata, ibid., vol. 95,
Pp. 1705, 1954.

[17] R. F. Harrington, Time-Harmonic Electromagnetic Fields.
York: McGraw-Hill, 1961, p. 118,

[18] M. Kobayashi, ‘‘Comments on some properties of lossless bianiso-
tropic media’’ and ——, “On the definiteness of the constitutive
parameters of a moving anisotropic medium,”’ to be published.

New

New Resuits in the Least pth
Approach to Minimax Design

J. W. BANDLER, SENIOR MEMBER, IEEE,
C. CHARALAMBOUS, STUDENT MEMBER, IEEE,
J. H. K. CHEN, anp W. Y. CHU, STUDENT MEMBER, IEEE

Abstract—We present results of two general approaches for ob~
taining minimax designs through a sequence of least pth approxima-
tions demonstrating increased efficiency over previous least pth
algorithms. Documented computer programs are available.

INTRODUCTION

This short paper demonstrates the acceleration of convergence to
minimax solutions by extrapolation on a sequence of least pth solu-
tions [1] with geometrically increasing values of p, and compares
the results with an efficient extension of work by Charalambous
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and Bandler [27, [3], in which a sequence of least pth solutions with
finite values of p are obtained in an effort to reach a minimax
solution. Documented computer programs. are available [4], [5],
as well as the theoretical background [61-[8].

THEORY
We minimize, with respect to ¢ for given £ and p > 1, the func-
tion
R — £\a\l/e
o (Z (%"g-f) ) L M@0 =0
U(d,5,p) & K b,
0, M8 =0 (1)
where
M;($) 2maxfi($),  M(dE LMi($) —§
el
q & psgn M($,E)
and

I1C {1,2,'”,7"}, M(d’;f) <0

K =
JA{|fi(¢) —£20,7 €1}, M(p,8) >0 (2)

and where & 2 [pipze - d5 ]’ is the design parameter vector, and
F1(3), Fo(d),++, fu(d) are m linear or nonlinear functions directly
related to the response error functions such that if M;($) > 0 the
specifications are violated and if M,($) < O the specifications are
satisfied.

Charalambous has shown [6] that if we have u and ¢ such that

2 uiVii($) =0
i=1

Uy 2 0: 7= 172""1m (3)

m
then, if Y u; f:(¢) is convex with respect to ¢,
i=1

S uedi(e) < My(8) < Mr(@) @

where 5) is the minimax optimum which is being sought,
u A [gtge  ~tin 17
and
V £ [9/0¢19/3¢as++3/0¢n 7.

The conditions (3) are satisfied at each optimum point (‘f)(p,g) for
a least pth objective function, yielding

Y ucfi($p,5) < Mp(d) < Mi(d(p,8) ®)
=1
where, assuming K contains all critical sample points,
(&
U = Z v; (6)
ieK
(£ m0) - s) .
T K
by = ( TR S
0, i¢ K. (7)

The first term of (5), under the stated conditions, is a lower bound
on M;($). It is, at any least pth solution, an optimistic indication
of the ultimate minimax error to be expected for a particular design.



